<table>
<thead>
<tr>
<th>Lesson</th>
<th>Title</th>
<th>Primary Activities</th>
<th>Assessments</th>
</tr>
</thead>
</table>
| 1 | The Language of Cryptology & the Shift is On! | • Student as Agent-in-training
• The importance of secrecy
• Career opportunities
• The terminology of codes
• Deciphering a shift cipher
• Introducing the cast of characters | • Survey of prior knowledge and opinions
• Caesar shift enciphering/deciphering
• Vocabulary check |
| 2 | Agent Training in Basic Arithmetic | • Multiplication algorithms/arrays
• Distributive property
• Division/remainders
• Tests for divisibility
• Parity and primeness | • Interpreting and making arrays
• Vocabulary of multiplication and division
• Solving for partial products and remainders
• Recognizing factors
• Recognizing parity and primeness |
| 3 | Codes That Use Keywords & Factoring | • De Vigenère ciphers
• The method of public key
• Squares and square roots
• Trial division and spreadsheet
• Prime factorization | • Keyword encoding and decoding
• Factoring using trial division
• Procedure writing |
| 4 | Cipher Formulas & Modular Arithmetic | • Atbash spreadsheet and formula
• Clock arithmetic
• Shift cipher formula
• A need for modular arithmetic
• Negative integers in mod 26 | • Writing modular notation
• Caesar shift enciphering/deciphering using modulo 26
• Solving time problems in mod 12
• Performing arithmetic in other modular bases |
| 5 | Digital Roots & the Secret Digit Trick | - Learning and explaining a number trick
- Problem constraints
- Casting out nines (modulo 9 congruence)
- Applying expanded notation and the distributive property
- Error trapping/computer bugs | - Performing a subtraction trick
- Explaining the trick using expanded form and distribution
- Writing a script
- Modeling constraints
- Catching math errors |
| 6 | Affine Ciphers & Modular Inverses | - Affine enciphering
- Mathematical limitations
- Pigeonhole principle
- Solving affine ciphers
- Inverses in modular form
- The inverse of composite operations | - Application of common factors and transforming the alphabet
- Finding modular multiplicative inverses
- Comparing multiplicative inverse forms
- Enciphering and deciphering with affine formulas
- Assessing affine weaknesses |
| 7 | Random Substitution & Cryptograms | - Permutations of the alphabet
- Crypto-analysis using statistics; English language structures; frequency counts of letters; common words/phrases
- A further weakness in shift ciphers | - Solving puzzles as an entry into cryptanalysis
- Solving cryptograms and codeword puzzles
- Making and analyzing frequency histograms
- Using technology to aid in analysis
- Comparing shift ciphers and the alphabet profile |
| 8 | Prime Secrets & Patterns Beware! | - Patterns in the square numbers
- Counting prime frequencies
- Investigating Euclid’s proof
- The Multiplication Race
- Fermat’s factoring method
- Investigations into pattern breakers | - Pattern recognition and extension
- Detecting pattern breaking
- Paraphrasing Euclid’s proof
- Mental calculation—sums and differences of squares
- Variable representation of differences of squares
- Performing and reporting investigations
- Factoring and prime detecting |
<table>
<thead>
<tr>
<th></th>
<th>An Abundance of Factors or Not!</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Factor lists</td>
<td></td>
<td>Investigation into a perfect number pattern—report of findings</td>
</tr>
<tr>
<td></td>
<td>Prime factorization</td>
<td></td>
<td>Finding odd abundant numbers—report of findings</td>
</tr>
<tr>
<td></td>
<td>Factor counts by formula</td>
<td></td>
<td>Review of prime factorization</td>
</tr>
<tr>
<td></td>
<td>Factor sums</td>
<td></td>
<td>Unit Review, Part I – The Math</td>
</tr>
<tr>
<td></td>
<td>Factor abundance and deficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Perfect numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geometric dissections</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Odd abundant numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A number trick with 1001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Strengthening the Ciphers</td>
<td></td>
<td>Unit Review, Part II – The Codes</td>
</tr>
<tr>
<td></td>
<td>Summary and Reflections; Cryptarithms</td>
<td></td>
<td>Final skill and vocabulary check (Unit Test)</td>
</tr>
<tr>
<td></td>
<td>Cipher variations and security comparisons</td>
<td></td>
<td>Post survey of knowledge and opinions</td>
</tr>
<tr>
<td></td>
<td>Parting puzzles</td>
<td></td>
<td>Writing assignment—acceptable use policy for codes</td>
</tr>
<tr>
<td></td>
<td>Exit project—Ethics in cryptology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>